

Microalgae: From biofuels to biopharmaceuticals

Theodor Fahrendorf ACP S&T Biofuels Workshop at SANUMARC Henties Bay: 3-5 June 2010

Jacobs University

History of Jacobs University

•1999 - Founded by City-State of Bremen, University of Bremen and Rice University, Texas as International University Bremen

2006 – Renamed to Jacobs University Bremen

•One research focus: BioGeoMarine Resources

•Currently 1200 students from 95 nations, 100 professors

•June 2008 - 1st spin-off company Phytolutions founded

Company Profile

Phytolutions provides complete phytoplankton solutions and is a partner for research and development in the field of renewable energies and environmental engineering.

Phytolutions in a nutshell:

Provider of:

Algal production systems, incl. downstreaming components

Algal biomass and high value ingredients

Pilot and large scale installations and corresponding services

Limited Fossil Energy Resources and Global Warming

Source: Survey of Energy Resources, World Energy Council 2007

Electricity from renewable energy resources in Germany

Global Challenges

Increase in Global Energy Demand and CO₂ Concentration

Why Algae

Target of European Community for 2020: 20% renewable energy. Algae grow 10 to 20 times faster than land based biomass. Independent from agricultural land and infrastructure. Unique ability of algae to grow in saline water. Efficient CO2 sink. The ocean will become the ultimate sink for anthropogenic CO2. Cleaning of flue gas.

Products:

Bio fuels, platform chemicals (green chemistry), animal food, pharmaceutics, building materials, bio plastics, etc.

Algae Challenges

Migration from industrial pilot applications to large scale exploitation

Further develop practical engineering systems

Increase productivity

Cost reduction

Demand for efficient photo bioreactors

Achieve efficient growth rates also in winter - mixotropic growth

Harvesting / Extraction

Efficient downstreaming

Potential and Limitations

Algae can play a major role to supply energy and food Production sites should address the following issues:

- access to cheap land (no tourismus, no agriculture)
- access to CO2 (proximity to emitting industries)
- usable solar radiation and temperature
- access to water, preferrable salt water (coastal areas)
- close to market

Algal products have been marketed for the food, feed and pharma segment. Production of energy from and through algae hast still a long way to go.

Where Algae Grow

10000 km2 ≈ 1 million t CO2/a 95 % recycled 10000 km2 ≈ 3 million t CO2/a 90 % recycled

Phytolutions Systems for Algae Production

Phytolutions has developed extremely economical and efficient systems for algae biomass production

Cost saving: Factor 5-10 with respect to competitors

Photo bioreactor from special film No greenhouse required Energy efficient venting Usage of waste heat Automated process and remote control

Downstream Biomass Utilization

Phytolutions Projects

5 MW Destructor station 1000 m2 bioreactor

1.8 GW Coal-fired power plant RWE 600 m2 / 1600 m2 bioreactor

50 MW Biomass power plant 1000 m2 bioreactor Consulting

Heating station 600 m2 bioreactor

Reference: RWE Project

600 m² bioreactor at RWE coal-fired power plant

Start of Operation: 1.8.08 in Niederaussem

Objective:

Investigation of Options for CO_2 Utilization Optimization of the complete process chain – from algae production to the final product

Partners:

Jacobs-University, Bremen, Forschungszentrum Jülich, Phytolutions GmbH, Bremen

RWE Project

RWE Project

How photosynthetically active are the algae with flue gas ?

Yield above 0.5 means algae are in a good physiological state

Conclusion: Flue gas has no negative affect on photosynthetic efficiency!

How productive are the algae with flue gas during spring?

Conclusions: - Flue gas has no negative effect on productivity 2.5 x higher productivity (per area) compared to an open pond system!

Pyrolysis of microalgae

Clients and energy projects with algae

Client	CO2-source	Location	Time frame
E.ON	Coal fired pp	D, Bremen	2004-2007
RWE	Peet fired pp	D, Niederaußem	2008 - 2013
SeeOTwo	Biomass pp	A, Vienna	2009 - 2011
Brewa	Waste material pp	D, Bremen	2010 - 2012
Vituki	Water treatment	H, Budapest	2010
Arcelor	Steel	D, Bremen	Planung 2011
Pfleiderer	MDF-Werk	D, Thüringen	Planung 2011
Cemex	Cement	D, Beckum	Planung 2011

Astaxanthin

Status: Market: Status Production of Astaxanthin in 2010 € 50 Mio.

EWOS, NO Skretting, Nutreco, NI Biomar, DK Emsland Alleraqua, (Shrimpsfutter) D,

Bioactive substances from microalgae

Phytolutions has a patented production system for antiviral substances Market: > € 150 Mio

Dairy industry, cosmetic industry

F	eed
	····

Status:

Market:

algal cultures for life feed, pastes and concentrates € 150 Mio.

Ostrea Sverige Oyster production,

German Shrimps(feed)

Oyster Production in Namibia

Feed algae

Nannochloropsis Isochrysis Tetraselmis Rhodomonas Thalassiosira Phaeodactylum Pavlova

Biodiversity-Project – Namibia

Collect and secure algal species

Establish a library that can be handled easily

Expand approach to other regions

Use library to screen for high value ingredients

Sell licenses to customers, provide services

Flow cytometry

Flow cytometry on microalgae

Exemplary FCM (flow cytometry) data on a mixed culture of microalgae illustrates the potential of this method. It is apparent from this sample that, although distinguishable, Population 1 and 2 (P1,P2) are extremely close together, making gating and subsequent sorting of individual populations difficult (5 C). P1 and P2 wre impossible to separate. After staing with nile red however, three separate populations become apparent are easily gated and sorted.

What makes a library precious ?

- 1. 30 % of new small molecules derived from algae and related sources
- 2. Screening for lipids, pigments, or antiviral-substances etc.
- 3. Interest of cosmetical and pharmaceutical Industry

Future Trends and Applications

Hepatotoxic substances/toxins lead to liver failure Use a specific antibody (CD30) to target toxin to liver cancer cells = therapeutic substance

Surface active or antibacterial substances from algae Modify and attach antibiotic substance = new surface "desinfectant" (food industry)

We do algae: from green to red...

Rhodomonas Nannochloropsis Isochrysis Thalassiosira

and Tetraselmis, Haematococcus, Dunaliella, Scenedesmus, Chlorella, Phaeodactylum

...from small to large

...and larger

In-door and out-door

A short history: 10 years ago-flat panel bioreactors

Klötze-Modules

phytobag system

Culturing microalgae in a phytobag

phytoharvester

phytocontrol unit

Closed bioreactors

	Phytolutions	IGV	Subitec	Solix Biofuls
Production system	Closed PBRs	Closed PBRs	Closed PBRs	Closed PBRs in open ponds
Average annual solar radiation at production sites (kWh m-2)	941-980	1061-1100 (941-980)c	1061-1100	1350-1450
Biomass concentration (kg m-3)	2-4	3-6	1-7	1-10
Volumetric productivity (kg m-3 d-1)	0.2-0.24	0.2-0.3 (0.12-0.22)c	0.8-1.0	0-0.7
Areal productivity (kg m-2 d-1)	0.022-0.027a	0.035-0.04a (0.019-0.026)c	0.016-0.02a	0-0.025a
Contamination risk	Low	Low	Low	Low
Investment cost (€/m- 2)	20b	~100	150b	Not specified

Competitors

Open Pond

	Sapphire Energy	Seambiotic	Petroalgae	Cyanotech
Production system	Closed PBRs/ Open ponds	Open ponds	Open ponds	Open ponds
Average annual solar radiation at production sites (kWh m-2)	>1950	>1850	>1950	>1950
Biomass concentration (kg m-3)	0.14-0.5c	0.14-0.5c	0.14-0.5c	0.1-0.5c
Volumetric productivity (kg m-3 d-1)	0.01-0.07c	0.01-0.18b	0.01-0.07c	0.028-0.046c
Areal productivity (kg m-2 d-1)	0.01-0.02a	0.027ab	0.01-0.02a	0.01-0.02a
Contamination risk	High	High	High	High
Investment cost (€/m- 2)	7-10	7-10	7-10	7-10

Global horizontal irradiation

phytolutions Mehr aus Algen. More than Fuels.

Summary:

We provide algal production systems and solutions

We are putting emphasis on biodiversity and collection of algae

We are looking for partners with aquaculture background and interest

Phytolutiosn interacts closely with Jacobs University – desire to establish an academic network

1 ha = 0,5 - 1,0 mio. Euro

Thank you very much for your attention !

Contact: Theodor Fahrendorf Phytolutions GmbH Fon: +49 421 566272 14

www.phytolutions.com t.fahrendorf@phytolutions.com

What space do we need ?

Global Carbon Cycle

Aquaculture

Spirulina platensis

Production of Haematococcus pluvialis

Microalgae use Nutrients from Biogas plant

Microalgae and Biogas

